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We demonstrate that a two-dimensional complete photonic band-gap �PBG� can be realized in a layered
periodic structure with a double-layer unit cell containing an anisotropic left-handed metamaterial layer. A set
of criteria is derived for the geometric and material parameters to realize a two-dimensional complete PBG in
such systems, and a detailed phase diagram is given. We discuss the underlying physics of the mechanism and
illustrate the complete band-gap effects with several concrete examples.
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I. INTRODUCTION

Conventional photonic band-gap �PBG� material is a type
of artificial composite with periodically modulated dielectric
constant, and the photonic gap is opened via the Bragg scat-
tering mechanism �1,2�. Usually, a periodic modulation along
one direction only yields a partial gap along that particular
direction. To realize a two-dimensional �2D� or 3D complete
PBG, one needs to construct photonic crystals �PhC’s� with
dielectric functions modulated periodically in two or three
dimensions �3–5�. However, such systems are not easy to
fabricate due to the complexities of the structure. Although it
was shown that a 1D PhC with appropriate geometric and
material parameters could provide an omnidirectional reflec-
tion, such an effect is not originated from a 3D complete
PBG �6,7�.

Left-handed metamaterial �LHM� is another type of arti-
ficial composite which has simultaneously negative permit-
tivity and permeability and, in turn, a negative refractive
index �8�. LHM samples functioning in microwave fre-
quency regime have been successfully fabricated in the labo-
ratory �9�, and many interesting electromagnetic �EM� char-
acteristics have been proposed or discovered based on such
novel materials �8,9�. In particular, PhC’s combining LHM
and ordinary materials were shown to display several ex-
traordinary PBG properties, which do not exist in conven-
tional PhC’s �10,11�. For example, a new type of PBG cor-
responding to a vanishing �volume� averaged refractive
index, denoted by the zero-n̄ gap, can be realized in a layered
system combining both positive- and negative-index mate-
rial, which is robust against weak disorder and lattice scaling
and possesses many other unusual properties �10�. Recently,
Shadrivov et al. argued that a 3D complete PBG could be
achieved in a 1D layered system consisting of isotropic LHM
layers with specific material and structural parameters �11�.
This is quite intriguing at first sight, since one naturally won-
ders how the light propagation is stopped along the other two
dimensions without Bragg scatterings. It turns out that the
unusual properties of a LHM waveguide are the keys to un-
derstand such a surprising result �11,12�.

We note that the proposed structure in Ref. �11� requires
an isotropic LHM sample, which is relatively hard to obtain
since most of the LHM samples designed to date are aniso-
tropic in nature. In this paper, we extend the ideas presented
in Ref. �11� to investigate the possibilities of realizing a com-
plete PBG in a layered system containing anisotropic trans-
parent LHM layers. The anisotropic metamaterials have at-
tracted considerable attention recently due to many
unexpected optical properties discovered in such systems
�13–17�. Since the anisotropy introduces additional com-
plexities to the problem, in the present paper, we only focus
on the possibilities of realizing a 2D complete PBG, which is
relatively easy to tackle. We present our work in the follow-
ing way. In Sec. II, we derive a set of criteria to facilitate
researchers to seek appropriate parameters that support a 2D
complete PBG in such a system and then present in Sec. III
a phase diagram for the permitted structural and material
parameters, as well as a general discussion of the underlying
mechanism for opening the complete PBG. We find that the
isotropic case discussed in Ref. �11� has been automatically
included in our general considerations. We then study several
examples to illustrate the complete gap effects in Sec. IV and
summarize our work in the last section.

II. CRITERIA TO REALIZE A 2D COMPLETE PBG

A. General formulas

The system we study is a 1D periodic layered structure
with a double-layer unit cell consisting of an air layer of a
thickness d1 and an anisotropic LHM layer of a thickness d2.
The latter is characterized by a permittivity tensor

�J = ��xx 0 0

0 �yy 0

0 0 �zz
�

and a permeability tensor

�J = ��xx 0 0

0 �yy 0

0 0 �zz
�

where the z axis is chosen normal to each layer. In this paper,
we only consider the possibilities of realizing a 2D complete
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PBG. Thus, we confine the light propagation directions in the
x-z plane and consider two independent polarizations—

namely, the transverse-electric �TE� mode with E� =Eŷ and

the transverse-magnetic �TM� mode with B� =Bŷ. According
to the Bloch theory, an eigen-EM wave inside a PhC should

be a Bloch wave with a Bloch wave vector K� =Kzẑ+Kxx̂.
With the help of the transfer matrix method, we find that Kz
is determined by the trace of a transfer matrix,

Tr�T��,Kx�� = 2 cos�Kza� , �1�

with a= �d1+d2� being the lattice constant. The transfer ma-
trix is a function of the frequency � and the parallel wave
vector Kx, which is conserved throughout the structures. For
a TE mode, simple calculations show that

Tr�TTE��,Kx�� =
1

4
��2 + � + �−1��ei�k2zd2+k1zd1�

+ e−i�k2zd2+k1zd1�� + �2 − � − �−1��ei�k2zd2−k1zd1�

+ e−i�k2zd2−k1zd1��� �2�

where k1z=	�� /c�2−Kx
2, k2z=	�yy�xx�� /c�2− ��xx /�zz�Kx

2,
and �=k2z / ��xxk1z� �18�. For a TM mode, Tr�TTM�� ,Kx��
takes exactly the same form as Eq. �2�, with only �xx, �zz,
and �yy substituted by �xx, �zz, and �yy, correspondingly.
Equation �1� immediately suggests that when the condition


Tr�TTE��,Kx��
 � 2,


Tr�TTM��,Kx��
 � 2 �− � � Kx � � � �3�

is satisfied, no propagating mode is allowed inside the sys-
tem so that a 2D complete PBG opens. In what follows, we
will examine the condition �3� in detail, to search for the
criteria imposed on the material parameters �J and �J and the
structural parameters d1 /�, d2 /� �where � is the gap wave-
length�. Due to the symmetry between TE and TM polariza-
tions, we only consider the case of TE polarization in the
following discussions.

We first consider in Sec. II B the situation that all ele-
ments of �J and �J tensors are negative and then demonstrate
in Sec. II C that structures containing ordinary materials �i.e.,
all elements of �J and �J tensors are positive� cannot support a
2D complete PBG. We will not consider the cases that some
elements of �J and �J tensors are negative while some others
are positive, since such metamaterials are inherently opaque
in some situations and thus become less interesting for the
present problem.

B. Situation of �J and �J�0

We only consider the case of �yy�zz�1 �i.e., the LHM
layer is optically dense�, since the case of �yy�zz�1 �i.e., the
LHM layer is optically sparse� yields similar conclusions.
Defining two critical values for Kx, kc

1=� /c and kc
2

=	�yy�zz� /c, we now separately consider the behaviors of
Tr�T� �subscript “TE” is omitted in the following discus-
sions� for Kx located inside the following three regions.

�I� When 0	Kx�kc
1, both k1z and k2z are real, and we call

it a propagating wave �PW� region.

�II� When kc
1�Kx�kc

2, k1z is imaginary but k2z is real, and
we call it a guided surface wave �GSW� region since the EM
wave is guided inside the metamaterial layer.

�III� When Kx�kc
2, both k1z and k2z are imaginary, and we

call it a surface plasmon polariton �SPP� region.
We first consider the SPP region. Setting k1z= i
 and k2z

= i�, we obtain

Tr�T� =
1

4
��2 + � + �−1��e−�
d1+�d2� + e�
d1+�d2��

+ �2 − � − �−1��e−�
d1−�d2� + e�
d1−�d2��� , �4�

with �= �
�xx


�0. Considering the fact that �+�−1�−2 �19�,
we find that Tr�T� tends to −� as Kx→�. This property
indicates that we must ensure Tr�T��−2 for all Kx in order
to get a complete PBG. Considering the variation region of
�(��0,−1/	�xx�zz�) within the entire SPP region, we find
that the condition to ensure Tr�T��−2 is

�xx�zz � 1. �5�

We next consider the PW region where we have

Tr�T� = 2 cos�k1zd1 − k2zd2�

− �� + �−1 + 2�sin k1zd1 sin k2zd2. �6�

Apparently, to ensure Tr�T��−2 in this region, we need the
Bragg condition

k1zd1 − k2zd2 = − m� �m = 1,3,5, . . . � . �7�

It is interesting to note that one must create an odd-numbered
Bragg gap in order to realize a complete PBG. This is a
unique property imposed by the negative index of the
metamaterial which dictates Tr�T�→−� as Kx→�. Later af-
ter considering the criteria in the GSW region, we further
show that actually only the mode with m=1 is eligible to
guarantee that Tr�T��−2 throughout the whole three re-
gions.

In the normal incidence case �i.e., Kx=0�, Eq. �7� becomes
�setting m=1�

�

c
d1 − 	�yy�xx

�

c
d2 = n̄

�

c
�d1 + d2� = − � , �8�

where n̄= �d1−	�yy�xxd2� / �d1+d2� is the volume-averaged
refractive index for light traveling along the z direction �re-
calling that �yy, �xx�0 so that the refractive index in this
medium is negative�. Although it was shown that a layered
system possessing a zero-n̄ gap supports an omnidirectional
reflection �17,20�, here we rigorously demonstrate that such
a gap is not a complete PBG �21�.

When Kx changes from 0 to kc
1 within the PW region, we

find k1zd1, k2zd2, and � to locate inside
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0 � k1zd1 �
�

c
d1,

	�yy�xx − �xx/�zz
�

c
d2 � k2zd2 � 	�yy�xx

�

c
d2,

− � � � � − 	�yy/�xx. �9�

According to Eq. �6� and employing the fact that �+�−1

+2�0 �19�, we find that the conditions to guarantee Tr�T�
�−2 within this region are

sin k1zd1 � 0, sin k2zd2 � 0, �yy/�xx � 1. �10�

Equation �10� implies that k1zd1� �0,�� and k2zd2

� �� ,2��. Considering the upper and lower boundaries of
k1zd1 and k2zd2 as shown in Eq. �9�, we find that Eq. �10� can
be further simplified to the following set of transparent re-
strictions imposed on the parameter and structural param-
eters:

d1 � �/2,

�

2
	�zz/��xx��yy�zz − 1�� � d2 � �/	�yy�xx,�yy�zz � 4/3,

�yy � �xx. �11�

The most difficult region turns out to be the GSW region
�i.e., kc

1�Kx�kc
2�. Here, k1z �=i
� is purely imaginary and

k2z is real, so that we can rewrite Tr�T� as

Tr�T� = − �e−
d1 + e
d1� − 2 cosh�
d1��1

2
� k2z

�xx

−

�xx


k2z




sin�k2zd2�tanh�
d1� − 2 cos2�k2zd2/2�� . �12�

At first sight, it seems hopeless to ensure Tr�T��−2 within
this region, since the function sin�k2zd2� inside the brackets
of Eq. �12� is an oscillatory function, and therefore, the sec-
ond term in Eq. �12� could become positive in some situa-
tions leading to the appearances of pass bands �i.e., 
Tr�T� 

	2�. However, a detailed examination shows that some par-
ticular structural and material parameters can help suppress
this seemingly inevitable oscillation of Tr�T� and thus make
the condition Tr�T��−2 satisfied within this region.

We note that at the lower edge of the GSW region �i.e.,
Kx=kc

1=� /c�, k2zd2 is an angle located inside �� ,2�� �see
Eq. �10� and the arguments following�, and at the upper edge
of the GSW region �i.e., Kx=kc

2=	�yy�zz� /c� k2zd2 must be
zero. Therefore, k2zd2 must decrease from an angle inside
�� ,2�� to 0, as Kx changes from kc

1 to kc
2 within the GSW

region. As a result, the function sin�k2zd2� will change its
sign from negative to positive at a particular Kx value where
k2zd2=�. Meanwhile, the function � k2z

�xx

−

�xx


k2z
� develops from

−� to +� as Kx increases and changes its sign at another Kx
value within the same region. Since the function sin�k2zd2�
changes its sign only once, if we make these two transition
values match, the first item in the brackets—i.e., 1

2
� k2z

�xx


−
�xx


k2z
�sin�k2zd2�tanh�
d1�—is always positive except at the

common transition Kx value. Meanwhile, at this particular Kx
value requiring k2zd2=�, we find that 2 cos2�k2zd2 /2�=0 and
thus the term in brackets in Eq. �12� is equal to 0. In addi-
tion, as Kxleaves this common transition value, we find that
the term 1

2
� k2z

�xx

−

�xx


k2z
�sin�k2zd2�tanh�
d1� increases more

quickly than the term 2 cos2�k2zd2 /2�. Based on all these
considerations, we find that the inequality

1

2
� k2z

�xx

−

�xx


k2z

sin�k2zd2�tanh�
d1� − 2 cos2�k2zd2/2� � 0

�13�

can be ensured if we match those two transition values.
Equations �12� and �13� suggest that the condition of Tr�T�
�−2 can be guaranteed within this region. Simple analysis
shows that matching these two Kx values requires that

	�xx
2 ��zz�yy − 1�
1 + �zz�xx

2d2

�
= 1. �14�

We emphasize that while Eq. �14� is a sufficient condition to
guarantee Tr�T��−2 within the GSW region, it is not a nec-
essary condition. Nevertheless, it is still helpful to guide us
to search for permitted parameter values.

Conditions �5�, �8�, �11�, and �14� form a set of sufficient
criteria to facilitate our search for appropriate parameters
�xx, �yy, �zz, d1 /�, and d2 /�, which collectively support a
2D complete PBG for the TE mode. Setting �xx=�xx, �yy
=�yy, and �zz=�zz, we then find a system to exhibit a 2D
polarization-independent complete PBG. Similar discussions
lead to the criteria for the case of �zz�yy �1, which will not
be repeated here.

As an example, we find the following set of parameters:

�xx = �xx = − 0.5, �yy = �yy = − 2, �zz = �zz = − 2.5,

d1 =
1

4
�, d2 =

3

4
� , �15�

to satisfy all the above criteria. With these parameters, we
calculated Tr�TTE� as a function of Kx and depict the results
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FIG. 1. 
Tr�T�
 as functions of Kx for a system with parameters
�a� �xx=�xx=−0.5, �yy =�yy =−2, �zz=�zz=−2.5, d1= 1

4�, and d2

= 3
4� �realizing an m=1 Bragg gap� and for a system with �b� �xx

=�xx=−0.5, �yy =�yy =−2, �zz=�zz=−2.5, d1= 1
4�, and d2= 7

4� �real-
izing an m=3 Bragg gap�. Here, I, II, and III denote the PW, GSW,
and SPP regions.
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in Fig. 1�a�. Obviously, the above set of parameters makes
Tr�TTE��−2 and, in turn, Tr�TTM��−2, for all Kx values.

The above analysis also helps us to understand why the
m=1 Bragg gap is the only possibility. For the m�1 case,
similar analysis indicates that k2zd2 must develop from an
angle within �m� , �m+1��� to 0 inside the whole GSW re-
gion. Therefore, the function sin k2zd2 must change its sign
more than one time, so that it is impossible to completely
destroy the oscillation of Tr�T� inside the GSW region, as we
did in the m=1 case.

Numerical calculations were performed to verify the
above analysis. We have realized an m=3 Bragg gap by
adopting the set of parameters �xx=�xx=−0.5, �yy =�yy =−2,
�zz=�zz=−2.5, d1= 1

4�, and d2= 7
4� and have depicted 
Tr�T�


in Fig. 1�b�. While we do get 
Tr�T� 
 �2 within both the PW
and SPP regions, we find Tr�T� to oscillate from a negative
value to a positive one in the GSW region, indicating that
guided modes must appear �as 
Tr�T� 
 	2�.

Our analysis is also intimately related to the phase argu-
ment given by Shadrivov et al. In Ref. �11�, the authors
argued that the condition for the existence of a waveguide
mode in a single air/metamaterial/air system is that the total
phase accumulation �total, which is twice the sum of the
propagating phase �P and the reflecting phase �R, should be
a multiple of 2�. In Figs. 2�a� and 2�b�, we plot
�P�=−k2zd2�, �R, and �total�=2��P+�R�� as functions of Kx

in the GSW regions for the two model systems that we stud-
ied. Indeed, we find that �R is always inside �0,−�� as
pointed out by Shadrivov et al. �11�. On the other hand,
while the m=1 mode can help restrict �total inside a region
�−2� ,−4�� so that no guided mode exists, the m=3 mode
cannot. The reason is simply that, for the latter case, �P
starts from an angle located inside �−3� ,−4��, as we have
analyzed, and develops towards 0 as Kx increases. As a re-

sult, �total inevitably passes −4� and −6� at two Kx values
�see Fig. 2�b��, generating guided modes. As a comparison,
we present in Figs. 2�c� and 2�d� expanded views of the
calculated Tr�T� in the GSW regions for the two model sys-
tems. Indeed, while we find that the condition Tr�T��−2 is
satisfied within the whole GSW region for the m=1 case,
Tr�T� goes into �−2,2� at two Kx intervals for the m=3 case,
manifesting the existences of two passbands. It is worthy
noting that the centers of the two pass bands predicted by our
analysis coincide well with the points where �total=−4�,
−6�.

C. Situation of �J, �J�0

Similar arguments show that a complete PBG cannot exist
in 1D periodic structures containing only ordinary materials
�i.e., all elements of �J and �J are positive�. First, we find that
Tr�T� tends to +� as Kx→ +�, indicating that we need to
ensure Tr�T��2 for all Kx to realize a complete PBG. The
criterion in the PW region is still Eq. �11�. In the GSW
region, we have

Tr�T� = �e−
d1 + e
d1�cos k2zd2 +
1

2
� k2z

�xx

−

�xx


k2z




sin k2zd2�e−
d1 − e
d1� , �16�

with k1z= i
. Similar to the arguments in the last subsection,
we know that k2zd2 decreases from an angle located inside
�� ,2�� to zero as Kx increases. Therefore, there must be a
particular Kx value where k2zd2 is equal to �. However, this
Kx value unfortunately leads to Tr�T�=−2�e−
d1 +e
d1��−2,
violating our requirement of Tr�T��2. As a result, Tr�T�
must oscillate from +� to a negative value, leading to pass-
bands.

III. PHASE DIAGRAMS AND PHOTONIC
BAND STRUCTURES

Now we compare our results with the isotropic case stud-
ied by Shadrivov et al. �11�. To avoid using two many vari-
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FIG. 2. �Color online� Propagation phase �P �dotted lines�, re-
flection phase �R �dashed lines�, and the total round-trip phase
�Total �solid lines�, as functions of Kx for a single anisotropic LHM
waveguide with parameters given by �a� �xx=�xx=−0.5, �yy =�yy

=−2, �zz=�zz=−2.5, and d= 3
4� and for another one with param-

eters given by �b� �xx=�xx=−0.5, �yy =�yy =−2, �zz=�zz=−2.5, and
d= 7

4�. �c� Tr�T� as a function of Kx within the GSW region for the
system studied in Fig. 1�a�. �d� Tr�T� as a function of Kx within the
GSW region for the system studied in Fig. 1�b�.

FIG. 3. �Color online� �a� Phase diagram of �xx, �yy, and �zz

supporting a 2D complete PBG by analyzing Eq. �2�. �b� Phase
diagrams of �xx�=�zz� and �yy supporting a 2D complete PBG ob-
tained by different methods. The dark region �red color online� is
obtained by numerically analyzing Eq. �2�, the solid star is obtained
by solving the analytical criteria �5�, �8�, �11�, and �14�, and the
light gray region is obtained by solving the relaxed analytical cri-
teria �5�, �8�, �11��, and �14�� with �1=0.14 and �2=0.27. Here, we
set d1=1.5� /2� and d2=1.4� /2�.
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ables, we set d1=1.5� /2� and d2=1.4� /2�, just as Ref.
�11�. We have numerically analyzed Eq. �2� and present a
phase diagram in Fig. 3�a� to depict the permitted values of
�xx, �yy, and �zz that guarantee 
Tr�TTE�� ,Kx�� 
 �2 for all
Kx. If we pick up those points satisfying �zz=�xx from Fig.
3�a� and project them onto a 2D diagram of �xx �=�zz� versus
�yy in Fig. 3�b�, we find that the obtained phase diagram
exactly recovers that of the isotropic case shown in Fig. 3 of
Ref. �11�, as expected. Obviously, the anisotropy here pro-
vides with us a wider parameter region than the isotropic
LHM layer case adopted by Shadrivov et al. �11�, if one only
wants to realize a 2D complete PBG �22�.

To demonstrate the validity of our analytical criteria, we
have compared the parameter region obtained by solving our
analytical criteria with that by numerically analyzing Eq. �2�.
For simplicity we only consider the isotropic case. Solving
the criteria �5�, �8�, �10�, and �14� with �xx=�zz, we found a
solution �xx=�zz=−1.0097�yy =−10.886 and plot it as a solid
star in Fig. 3�b�. This solution is located well inside the “ex-
act” parameter region obtained numerically. As we have
pointed out, the analytical criteria that we obtained are suf-
ficient conditions to realize a 2D complete PBG, but not
necessary ones. In particular, the conditions �11� and �14� are
overly strict. If we relax those two conditions as

��

c
d1 − 	�yy�xx

�

c
d2 + �� � �1, �11��

�	�xx
2 ��zz�yy − 1�
1 + �zz�xx

2d2

�
− 1� � �2, �14��

where �1 and �2 are two small positive numbers, we can then
find an expanded parameter region. For example, we have
solved the relaxed analytical criteria �5�, �8�, �11��, and �14��
with �1=0.14,�2=0.27. The obtained parameter region is
shown in Fig. 3�b� as a gray area, which is still inside the
“exact” parameter region obtained numerically. However,
one should be careful not to choose too large values for �1
and �2, since the relaxed conditions �11�� and �14�� are not
rigorous anyway.

Since all LHM samples are highly dispersive �23,24�, we
now consider a system consisting of a dispersive anisotropic
LHM layer with �J and �J given by

�xx = �xx = 1 −
54

f2 , �yy = �yy = 1 −
108

f2 ,

�zz = �zz = 1 −
126

f2 , �17�

where f denotes the frequency measured in GHz. The fre-
quency dependences of these parameters are shown in Fig.
4�a�. At f =6 GHz, we find that �xx=�xx�−0.5, �yy =�yy �
−2, �zz=�zz�−2.5, and �0=50 mm. If we further set d1

= 1
4�0 and d2= 3

4�0, we find that this set of parameters is just
what we have used in Fig. 1�a� �Eq. �15��. We then employ
these parameters to calculate the photonic band structures of
our system for two particular directions—along the periodic
direction �i.e., set Kx=0� and along the lateral direction �i.e.,
set Kz=0�—and show the results in Figs. 4�b� and 4�c�, re-
spectively. As expected, photonic band gaps appear simulta-
neously around 6 GHz in both spectra. We can easily iden-
tify that the PBG along the periodic direction �Fig. 4�b�� is
induced by Bragg scattering. In addition, we note that
Kza 

=� inside the gap, consistent with Eqs. �7� and �8� dictating
that the Bragg gap must be a mode with m=1.

On the other hand, the photonic band structure for light
traveling along the lateral direction is quite complicated,
which obscures our understanding of the gap opening
mechanism. To gain a clearer understanding, we replot the
band structure in Fig. 5, with a light line �Kx=� /c� added. In
addition, we adopt dark �bright� regions in Fig. 5 to represent
the situations where the EM waves are evanescent �propagat-
ing� inside the anisotropic metamaterial. With the help of
these auxiliary tools, we can easily identify the three regions
�i.e., the PW, GSW, and SPP regions�, which we defined in
Sec. II B. We find that the spectra in different regions can be
traced back to different origins. For example, the band struc-
tures within the GSW and SPP regions coincide excellently
with the dispersion relations of the guided surface waves and
surface plasmon polaritons calculated for a single anisotropic
LHM slab �denoted by open triangles and open stars, respec-
tively�. This is understandable since evanescent waves in air
decay so rapidly that coupling between different slabs can be
neglected as Kx is large enough.
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However, deviations exist when approaching the light line
of air, where evanescent waves decay slowly in air so that
the coupling between slabs becomes important. For such a
situation, we find that the effective medium model �EMM�
works well. For light traveling along the lateral direction and
with a TE polarization, in the long-wavelength limit �k1zd1

�1,k2zd2�1�, we find that the system can be viewed as an
effective medium with �ef f = �d1+�yyd2� / �d1+d2� and �ef f

= �d1+d2� / �d1+�xx
−1d2�, which shows that �ef f is a volume

average of individual dielectric constants and the inverse of
�ef f corresponds to a volume average of the inverse of per-
meability. The dashed line in Fig. 5 represents the dispersion
of the EMM,

kx = 	�ef f����ef f���
�

c
, �18�

which coincides perfectly with the realistic band structure in
the region where the long-wavelength limit is reached.

Now that we know the origins of all those photonic modes
in different regions, we then gain a deeper understanding of
the mechanism to build a complete PBG. To do so, we need
to suppress simultaneously the effective medium mode, the
GSW modes, and the SPP modes and to create an m=1
Bragg gap along the periodic direction within a given fre-
quency band. In fact, our condition �5� is nothing but to
suppress the SPP modes; our condition �14� is sufficient to
destroy the GSW modes; the condition �8� helps us to create
an m=1 Bragg gap; and the condition �11� ensures that the
Bragg gap is not closed within the whole PW region.

IV. ILLUSTRATIONS OF THE COMPLETE PBG EFFECT

We present some numerical results to illustrate the com-
plete PBG effects. We consider a layered system with 32
double-layer unit cells, with structural parameters d1= 1

4�0

and d2= 3
4�0 ��0=50 mm� and material parameters given by

Eq. �17�. An infinitely long line current source, with current
distribution given by j��r , t�=�0I0��x���z�e−i�tŷ, is placed at
the center of the system. Extending the Green-function
method developed previously for a single-slab case �25� to
the present multilayer case, we are able to calculate the elec-
tric field at an arbitrary point within the structure. For three
typical directions �=0°, 45°, 80° �26�, with � being the azi-
muthal angle, we have calculated the electric field Ey as
functions of frequency f�=� /2��, at positions determined by
r�=R�cos �ẑ+sin �x̂� �see the inset to Fig. 6�a��. The ampli-
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given by the effective media model.
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tudes of the normalized electric fields 
Ey /�0I0
, which are
proportional to the transmission rates, are depicted versus
frequency f in Figs. 6�a�–6�c�, for the three angles corre-
spondingly. For all three directions considered, the dimin-
ished transmissions within a common frequency regime
�5.8–6.17 GHz� have unambiguously demonstrated that a
2D complete PBG does open there. In particular, when the
observation point moves far away �i.e., R increases�, the
transmission rate decreases drastically while the gap edge is
sharpened. These are typical characteristics of a PBG.

At the central gap frequency f =6 GHz, we employed the
Green-function method to calculate the electric field distri-
bution inside the same system. From the field distribution
recorded in Fig. 7 �26�, we see clearly that waves radiated
from the line source cannot propagate along any direction
inside the structure, demonstrating that we have realized a
2D complete PBG in such a structure. Considering the dual-
ity between �J and �J of the present system, it is natural to
conclude that the gap is a 2D polarization-independent com-
plete one.

V. CONCLUSIONS

To summarize, we have demonstrated the possibilities of
realizing a 2D polarization-independent complete PBG in a

1D periodic structure with a double-layer unit cell consisting
of an air layer and an anisotropic �transparent� LHM layer.
Through analyzing the trace of the transfer matrix function,
we have derived a set of criteria imposed on the materials
and structures, in order to realize a 2D complete PBG. Com-
pared with the 1D isotropic periodic left-handed structures
studied previously, we find that the present system offers a
wider permitted parameter region to realize a 2D complete
PBG. We have discussed the underlying physics of the
mechanism and employed several examples to illustrate the
complete PBG effects.
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